Definisi 0! = 1
PRINSIP DASAR (ATURAN PERKALIAN)
Jika suatu kejadian dapat terjadi dalam n1 cara yang berlainan dan kejadian yang lain dapat terjadi dalam n2 cara yang berlainan maka kejadian-kejadian tersebut bersama-lama dapat terjadi n1.n2 cara yang berlainan.
Contoh:
Berapakah banyak bilangan-bilangan bulat positif yang ganjil terdiri atas 3 angka yang dapat disusun dari angka-angka 3, 4, 5, 6 dan 7.
Jawab:
Sediakan 3 kotak, masing-masing untuk ratusan, puluhan dan satuan.
ratusan |
puluhan |
satuan |
- Tiap angka dapat diambil sebagai ratusan. Cara itu menghasilkan 5 kemungkinan.
- Karena tidak diharuskan ketiga angka berlainan, maka tiap angka dapat diambil sebagai puluhan. Ada 5 kemungkinan lagi. Satuan hanya dapat dipilih dari 3, 5, 7 sebab harus bilangan ganjil . Ada 3 kemungkinan.
- Maka banyak bilangan ada 5 . 5 . 3 = 75 bilangan.
Permutasi | Misalkan ada 3 unsur a, b, c. Kita dapat mengurutkan sebagai abc, acb, bac, bca, cab, cba. Tiap urutan disebut permutasi 3 unsur. Dalam contoh di alas: ada 6 permutasi terdiri 3 unsur diambil ketiga-tiganya. Ditulis 3P3 = 6 Secara Umum Banyak permutasi k unsur dari n unsur adalah : nPk = n! / (n-k) ! Contoh:Berapa banyaknya permutasi dari cara duduk yang dapat terjadi jika 8 orang disediakan 4 kursi, sedangkan salah seorang dari padanya selalu duduk dikursi tertentu. Jawab: Jika salah seorang selalu duduk dikursi tertentu maka tinggal 7 orang dengan 3 kursi kosong. Maka banyaknya cara duduk ada : 7P3 = 7!/(7-3)! = 7!/4! = 7.6.5 = 210 cara Permutasi Siklis Dari n obyek dapat disusun melingkar dalam (n-1) ! cara dengan urutan berlainan. Contoh: Ada berapa cara 7 orang yang duduk mengelilingi meja dapat menempati ketujuh tempat duduk dengan urutan yang berlainan? Jawab: Banyaknya cara duduk ada (7 - 1) ! = 6 ! ® 6 . 5 . 4. 3 . 2 . 1 = 720 cara. |
Tidak ada komentar:
Posting Komentar